
TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13

Optimizing Convolutional Neural Networks on the Sunway 1

TaihuLight Supercomputer 2

WENLAI ZHAO, HAOHUAN FU, JIARUI FANG, WEIJIE ZHENG, LIN GAN, and 3

GUANGWEN YANG, Tsinghua University 4

5
The Sunway TaihuLight supercomputer is powered by SW26010, a new 260-core processor designed with on- 6
chip fusion of heterogeneous cores. In this article, we present our work on optimizing the training process 7
of convolutional neural networks (CNNs) on the Sunway TaihuLight supercomputer. Specifically, a highly 8
efficient library (swDNN) and a customized Caffe framework (swCaffe) are proposed. Architecture-oriented 9
optimization methods targeting the many-core architecture of SW26010 are introduced and are able to achieve 10
48 times speedup for the convolution routine in swDNN and 4 times speedup for the complete training process 11
of the VGG-16 network using swCaffe, compared to the unoptimized algorithm and framework. Compared to 12
the cuDNN library and the Caffe framework based on the NVIDIA K40m GPU, the proposed swDNN library 13
and swCaffe framework on SW26010 have nearly half the performance of K40m in single -precision and have 14
3.6 times and 1.8 times speedup over K40m in double precision, respectively. 15

CCS Concepts: • Computing methodologies → Neural networks; • Computer systems organization 16
→ Multicore architectures; 17

Additional Key Words and Phrases: Convolutional neural network, deep learning, heterogeneous many-core 18
architecture, Sunway TaihuLight supercomputer 19

This article is an extension of a conference paper: “swDNN: A Library for Accelerating Deep Learning Applications on

Sunway TaihuLight” published in IPDPS 2017 [10]. We consider this work an improved edition of the conference paper

with new contributions listed as follows:

• We present a more systemic algorithm design and optimization process with methods related to the local directive

memory usage, register communication, and instruction pipeline, including a modified performance model and a

new register blocking strategy based on the previous work.

• We propose algorithm design and optimization methods to support single precision on SW26010.

• We present the swDNN library with a four core-group (CG) parallelization to support different CNN layers.

• We propose swCaffe, an optimized Caffe framework that can support a highly efficient CNN training process on

the Sunway TaihuLight supercomputer.

• We present algorithm and framework evaluation with both float and double precision for training practical CNN

models to provide more comprehensive performance results.

This work was supported in part by the National Key R&D Program of China (grant 2016YFA0602200), by the National

Natural Science Foundation of China (grants 4137411, 91530323, 61702297, and 61672312), and by the China Postdoctoral

Science Foundation (2016M601031).

Authors’ addresses: W. Zhao, J. Fang, W. Zheng, L. Gan, and G. Yang, Department of Computer Science and Technology, Ts-Q1

inghua University, Beijing 100084; H. Fu (corresponding author), Department of Earth System Science, Tsinghua University,

Beijing 100084, China; email: haohuan@tsinghua.edu.cn. All authors are concurrently with the National Supercomputing

Center in Wuxi, Wuxi, 214000, Jiangsu Province, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1544-3566/2018/03-ART13 $15.00

https://doi.org/10.1145/3177885

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3177885

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:2 W. Zhao et al.

ACM Reference format:20
Wenlai Zhao, Haohuan Fu, Jiarui Fang, Weijie Zheng, Lin Gan, and Guangwen Yang. 2018. Optimizing21
Convolutional Neural Networks on the Sunway TaihuLight Supercomputer. ACM Trans. Archit. Code Optim.22
15, 1, Article 13 (March 2018), 26 pages.23
https://doi.org/10.1145/317788524

25

1 INTRODUCTION26

The convolutional neural network (CNN [14]) is one of the most successful deep learning modelsQ2
27

in modern artificial intelligence applications [8, 12, 20, 22, 24]. The training process of CNN28
involves a large amount of computation and has become a popular research topic in the field of29
high performance computing (HPC). GPUs have currently been considered as the most efficient30
hardware choice for deep learning tasks and can support high-level deep learning frameworks [1,31
4, 7, 13].32

Sunway TaihuLight [11], a supercomputer that ranks number one in the latest release33
(November 2017) of the TOP 500 list with over 100 PFlops computing capacity, is powered by the34
SW26010 many-core processor, which is designed with on-chip fusion of heterogeneous cores35
and is able to provide a peak double-precision performance of 3.06 TFlops. SW26010 introduces36
several unique features that could potentially accelerate the training process of CNNs, such as37
user-controlled local directive memory (LDM), hardware-supported register-level data sharing,38
and a unified memory space shared by all processing elements.39

Our previous publication [10] introduced the optimization of convolutional algorithm targeting40
the many-core architecture of SW26010. As an extension of the previous work, in this article we41
present a more systemic optimization process to accelerate CNN training tasks on the Sunway Tai-42
huLight supercomputer. Specifically, a highly efficient library and a customized Caffe framework43
for the SW26010 many-core processor are proposed.44

The major contributions of this article include the following:45

• We propose algorithm design and optimization methods related to the LDM usage, reg-46
ister communication, and instruction pipeline, guided by a performance model. The opti-47
mized convolution routine can achieve 48 times speedup over the basic implementation on48
SW26010.49

• A customized deep learning library for the SW26010 many-core processor is developed,50
called swDNN, to provide the support for various computation and data processing layers51
in CNN models.52

• An optimized Caffe framework for the SW26010 many-core processor is proposed, called53
swCaffe, which is integrated with the swDNN library and supports a four core-group (CG)54
parallelization on a SW26010 processor. The swCaffe framework can achieve about 4 times55
speedup over a BLAS-based Caffe framework on SW26010.56

Evaluation results also show that the proposed convolution implementation and the swCaffe57
framework have nearly half the performance of the NVIDIA K40m GPU in single precision while58
achieving 3.6 times and 1.8 times speedup over K40m in double precision, respectively.59

The article is organized as follows. Section 2 introduces the background of the work, includ-60
ing the CNN algorithms, the detailed architecture of SW26010, and the related work on the opti-61
mization of CNN algorithms. Section 3 presents the performance model and architecture-oriented62
optimization methods targeting the convolution algorithm, including the evaluation of the im-63
plementation. Section 4 presents the swDNN library and the swCaffe framework, as well as the64

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

https://doi.org/10.1145/3177885

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:3

Table 1. Configurations

of a Convolutional Layer

Ni Number of input feature maps
Ri Height of an input feature map
Ci Width of an input feature map
No Number of output feature maps
Ro Height of an output feature map
Co Width of an output feature map
K Size of convolution kernel

evaluation of the complete training process with swCaffe on a SW26010 many-core processor. 65
Section 5 presents our conclusion. 66

2 BACKGROUND 67

2.1 Convolutional Neural Networks 68

CNNs usually contain multiple computing layers, among which convolutional layers usually ac- 69
count for the majority of the computing time (greater than 90%). We first give the description of 70
the convolutional layer configurations, listed in Table 1. The input data of a convolutional layer 71
consists of Ni channels, each of which can be considered as a feature map with size of Ri ×Ci . 72
Similarly, the output of a convolutional layer consists of No feature maps with size of Ro ×Co . To 73
calculate the values in an output feature map, Ni convolutional kernels with size of K × K and 1 74
bias value are required. Each kernel convolutes with an input feature map. The output value equals 75
the sum of Ni convolution results and the bias value. Therefore, there are Ni × No convolutional 76
kernels and No bias in a convolutional layer. 77

The training process of a CNN model is based on the stochastic gradient descent (SGD) 78
algorithm. In each training step, the network is trained with a batch of samples. We define the 79
batch size as Bs , and the original algorithm of a convolutional layer in a training iteration can 80
be described as Algorithm 1. The input data, output data, and convolution weights are organized 81
in four-dimension tensors, and there are seven nested loops in the algorithm, which provides 82
possibilities for the parallel optimization on many-core processors like SW26010. 83

In addition to convolutional layers, a CNN usually contains other kinds of layers, such as pooling 84
layers, fully connected layers, softmax layers, and other data processing layers, such as activation 85
function layers and normalization layers. Different CNN models have different network structures, 86
which describe how different kinds of layers are stacked in the neural network. 87

The major algorithm of fully connected layers is matrix multiplication, which can be supported 88
by the high-performance basic linear algebra subprograms (BLAS). Other layers, such as pooling, 89
activation functions, and softmax, can be considered as data processing layers, and they are not 90
the critical points of performance optimization. 91

2.2 SW26010 Many-Core Architecture 92

Figure 1 shows the architecture of a SW26010 many-core processor. SW26010 consists of four CGs, 93
and each CG includes 65 cores: one management processing element (MPE), and 64 computing 94
processing elements (CPEs) organized as an 8 × 8 mesh. The MPE and CPE are both complete 95
64-bit RISC cores but serve different roles in a computing task. 96

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:4 W. Zhao et al.

Fig. 1. SW26010 architecture.

ALGORITHM 1: Original Algorithm of a Convolutional Layer

1: //IN [Bs][Ni][Ri][Ci], OUT [Bs][No][Ro][Co], CONVW [No][Ni][Kr][Kc], and b[No] are input/output

feature maps, convolutional kernels, and bias

2: //Kr = Kc = K represent the number of rows and columns of a 2-dimensional convolutional kernel

3: //The output images OUT are initialized with the bias b
4: for cB := 0 : 1 : Bs do

5: for cNo := 0 : 1 : No do

6: for cRo := 0 : 1 : Ro do

7: for cCo := 0 : 1 : Co do

8: for cNi := 0 : 1 : Ni do

9: for cKr := 0 : 1 : Kr do

10: for cKc := 0 : 1 : Kc do

11: OUT [cB][cNo][cRo][cCo]+ = CONVW [cNo][cNi][Kr − 1 − cKr][Kc − 1 − cKc]

∗IN [cB][cNi][cRo + cKr][cCo + cKc];

12: end for

13: end for

14: end for

15: end for

16: end for

17: end for

18: end for

An MPE has a 32KB L1 instruction cache, a 32KB L1 data cache, and a 256KB L2 cache, supporting97
the complete interrupt functions, memory management, superscalar, and out-of-order instruction98
issue/execution.99

The CPE is designed for maximizing the aggregated computing throughput while minimizing100
the complexity of the microarchitecture. Each CPE has a 16KB L1 instruction cache and a 64KB101
LDM. The LDM can be considered as a user-controlled fast buffer, which allows orchestrated mem-102
ory usage strategies for different implementations, so the LDM-level optimization is one of the103
important ways to improve the computation throughput.104

A CPE has 32 vector registers (256 bits) and two execution pipelines (P0 and P1). P0 supports105
scalar and vectorized computing operations of both floating-point and integer, whereas P1 sup-106
ports scalar and vectorized data load/store, compare, jump operations, and scalar integer oper-107
ations. The double pipelines provide an opportunity for the overlapping of data accessing and108

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:5

computation operations. Therefore, register-level and instruction-level optimizations are also im- 109
portant to performance. 110

Inside the 8 × 8 CPE mesh, there is a control network, a data transfer network (connecting the 111
CPEs to the memory interface), eight column communication buses, and eight row communication 112
buses. Each CPE has two 1,024-bit send buffers and two 1,024-bit receive buffers for column and 113
row communication separately. The communication buses and buffers enable fast register-level 114
data communication between CPEs of same column and same row, providing an important data 115
sharing and cooperation capability within the CPE mesh. 116

In the instruction set, there are customized load/store instructions to support both vectorized 117
data access and data sharing in a nonblocking mode. For example, a vldr instruction first loads 118
256-bit data into a vector register and then performs the row broadcast; a vlddec instruction first 119
loads 64-bit data into a scalar register, then extends (copies) the data to fill a vector register, and 120
finally performs the column broadcast. Based on these instructions, highly efficient data access and 121
register communication can be realized. 122

Each CG connects to a memory controller (MC), through which 8GB memory space can be 123
accessed and shared by the MPE and the CPE mesh. The maximum memory bandwidth of an 124
MC is 36GB/s. An on-chip network (NoC) connects four CGs, so the memory of a CG can also 125
be shared to other CGs. Users can explicitly set the size of each CG’s private memory space 126
and the size of the shared memory space. Through NoC, data sharing between four CGs can be 127
implemented without memory data copy, which enables highly efficient CG-level parallelism for 128
communication-intensive problems. Under the sharing mode, the maximum memory bandwidth 129
of four CGs is up to 144GB/s. 130

2.3 Related Works 131

A straightforward implementation of the original convolution algorithm involves strong data de- 132
pendency in the innermost accumulation computation. To improve the parallelism, several opti- 133
mization methods are proposed, which can be summarized into the following three categories. 134

• Time-domain transformation methods are first introduced in the early phase of CNN opti- 135
mization research [2, 6, 15]. By expanding convolution operations into matrix multiplica- 136
tions, the performance can be improved with the help of the BLAS on different hardware 137
platforms. However, additional data transformation is required, which either consumes 138
more memory space and extra data copy operations or involves complicated memory ad- 139
dress remapping. Therefore, the memory consumption and bandwidth are major problems 140
for time-domain transformation methods, and the overall performance is limited by the 141
performance of BLAS. 142

• Frequency-domain transformation methods can reduce the arithmetic complexity of convo- 143
lution operations. FFT-based [18, 23] and Winograd’s filtering-based [16] convolution al- 144
gorithms are proposed and perform well in cases with both large and small convolution 145
kernel sizes. Similar to time domain–based methods, additional data transformation, as well 146
as extra memory consumption, is required, and the overall performance is limited by the 147
performance of transformation. 148

• Direct convolution optimization methods can reduce the data dependency by redesigning 149
the convolution algorithm with loop reordering and data blocking, so as to improve the 150
parallelism of the core computation. Instead of relying on existing BLAS or FFT libraries, 151
direct convolution implementations require hardware-oriented optimization methods to 152
take full advantage of the hardware architecture, and therefore the overall performance 153
can approach the peak performance of the processor. Moreover, by carefully designing the 154

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:6 W. Zhao et al.

Fig. 2. Performance model for one CG (EE, execution efficiency; RBW, required bandwidth; MBW, measured

bandwidth).

data blocking strategies, additional data transformation and extra memory consumption155
can be avoided, which is more suitable for memory and bandwidth bounded architectures.156

In addition to the algorithm optimization, various hardware accelerators are employed to157
accelerate the convolution computation, such as GPU, FPGA, and ASIC, focusing on both158
classification and training process of CNNs. FPGAs [19, 25–27] and ASICs [3, 5, 9, 17] are usually159
used for classification tasks due to the customizability of data precision, low latency, and high160
energy efficiency. GPUs have currently dominated the competition of the HPC platforms for161
training tasks. Especially, NVIDIA launched GPU like V100, which includes deep learning specific162
units such as tensor cores. Correspondingly, the cuDNN [6] library was released to provide highly163
efficient routines for deep learning algorithms on NVIDIA GPUs and can be neatly integrated to164
widely used deep learning frameworks such as Caffe [13] and TensorFlow [1].165

To explore the potential of training CNNs on other off-the-shelf many-core processors, in this166
article we present the detailed architecture-oriented optimization methods for the convolution167
algorithm on the SW26010 processor. Then we show the design of the deep learning library and168
the customized Caffe framework dedicated for the SW26010 processor, so as to support a highly169
efficient training process of the CNN on the Sunway TaihuLight supercomputer.170

3 CONVOLUTION ALGORITHM OPTIMIZATION171

We first introduce a performance model that shows the features of the SW26010 architecture and172
indicates the key factors that could affect the performance of an implementation. Guided by the173
performance model, we redesign the convolution algorithm and propose LDM-related, register-174
related, and instruction-related methods for further optimizations.175

3.1 Performance Model176

We consider different factors that affect the performance of one CG and propose a performance177
model shown in Figure 2. The frequency of a CPE is 1.45GHz and the vectorization size is 4.178

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:7

Assuming that each CPE executes one vector floating-point multiplication and addition (vfmad) 179
instruction, the peak performance of a CG can be derived as: 180

2 × 4 × 1.45 × 64 = 742.4GFlops (1)

For an implementation, we define the execution efficiency (EE) as the ratio of vfmad instructions 181
to the total execution cycles. Therefore, considering the loss from EE, the theoretical performance 182
of an implementation is 742.4GFlops · EE. 183

Before a computing instruction can be executed, we need to make sure that the data has been 184
loaded into registers. For a vfmad instruction, 12 double-precision numbers (12 × 64 = 768 bits) 185
are needed. In Figure 2, the required bandwidth (RBW) of an implementation is defined as the 186
minimum data access bandwidth that could overlap the data access and computation. 187

A CPE supports two data access patterns to load the data into registers. One is the global 188
memory access (gload instruction), which can load 64 bits of data into a scalar register directly 189
from main memory. In this case, to guarantee the overlapping of computation and data access, the 190
data accessed by a gload instruction should be involved in at least 12 vfmad instructions (768 bits : 191
64 bits). Here we define the computation to data access ratio (CDR), which represents the ratio of 192
computation instructions (vfmad) to data access instructions. In the global memory access pattern, 193
to overlap the computation and data access, the CDR should be greater than 12, which can 194
hardly be met by most algorithms. Therefore, the global memory access pattern is relatively low 195
efficient. 196

The performance model of the global memory access pattern is shown in Figure 2. The maximum 197
memory bandwidth of one CG is about 8GB/s. We denote the RBW by RBWMEM−>REG . Here we 198
assume that the computation and the data access are parallel processes and are independent, which 199
can be realized through some optimization methods, such as double buffering (see Section 3.3.2). 200
Therefore, if the RBWMEM−>REG is greater than 8GB/s, it will lower the performance by a rate of 201

8 GB/s
RBWM EM−>REG

. 202

The other memory access pattern is to use the LDM as a data cache, which means that the data 203
will be loaded first from the main memory into the LDM and then from the LDM into registers. 204
There are two stages of data accessing in this case. We denote the RBW of the two stages by 205
RBWMEM−>LDM and RBWLDM−>REG . When loading data from the LDM to registers, vectorized 206
load instruction (vload) is supported. Each vload instruction can load 256-bit (32 Bytes) data into 207
a vector register. The execution of load/store instructions usually takes three or four CPU cycles 208
and is a nonblocking process so that we can issue an instruction every cycle and the bandwidth 209
between the LDM and registers is 32 Bytes × 1.45 GHz = 46.4 GB/s. 210

Data is transferred from main memory to the LDM through the direct memory access interface 211
(DMA), and the theoretical maximum bandwidth of the DMA is 36GB/s. A DMA put/get operation 212
will access one or more memory blocks, which has a size of 128Bytes for SW26010. The latency of a 213
DMA request from CPEs is usually more than 100 CPU cycles. Therefore, theoretically, successive 214
DMA operations with large granularity can make full use of the DMA bandwidth. Practically, the 215
actual bandwidth is not a constant value and is variant with the size of continuous memory access 216
blocks of one CPE. We write a microbenchmark on one CG to measure the actual DMA bandwidth 217
and present the results in Table 2, where Size indicates the granularity of a DMA operation. We 218
denote the measured DMA bandwidth (MBW) byMBWMEM−>LDM . We can see that the bandwidth 219
of the DMA ranges from 4GB/s to 36GB/s. In general, a higher bandwidth is achieved when using 220
a block size larger than 256Bytes and aligned in 128Bytes. 221

Figure 2 also shows the performance model of the LDM-cache memory access pattern. Here 222
the required CDR is 3 (768 bits : 256 bits), which is more easily accomplished compared to the 223
global memory access pattern. Our design is based on the LDM-cache memory access pattern. 224

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:8 W. Zhao et al.

Table 2. Measured DMA Bandwidth on One CG(GB/s)

Size (Byte) Get Put Size (Byte) Get Put

32 4.31 2.56 512 27.42 30.34

64 9.00 9.20 576 25.96 28.91

128 17.25 18.83 640 29.05 32.00

192 17.94 19.82 1024 29.79 33.44

256 22.44 25.80 2048 31.32 35.19

384 22.88 24.67 4096 32.05 36.01

According to the performance model, we propose optimization methods to overlap the compu-225
tation and data access, to increase the MBWMEM−>LDM , EE, and to reduce the RBWMEM−>LDM226
and RBWLDM−>REG .227

3.2 Algorithm Design228

Considering the original algorithm of a convolutional layer (Algorithm 1), the inner loops perform229
aK × K convolution. Usually, the value ofK is relatively small and is odd, such as 3, 5, 7. Therefore,230
it is hard to map the inner loops onto the CPE mesh and is also inefficient for the vectorization of231
core computation.232

To improve the parallelism, we reschedule the seven nested loops, making the inner computa-233
tion to be a matrix multiplication with dimensions Ni , No , and Bs , which are relatively large in234
most convolution layers and are suitable for mapping the inner computation onto the CPE mesh.235
Algorithm 2 shows the optimized algorithm based on matrix multiplication. We call the inner236
matrix multiplication operation the core computation. To complete the computation of an output237

matrix (Do) of size No × Bs , each CPE is responsible for a block of size No

8 ×
Bs

8 . Correspondingly,238

the input data of a CPE includes a tile of the input matrixW (of size No

8 × Ni) and a tile of the input239

matrix Di (of size Ni × Bs

8), both of which can be shared between the CPEs either in the same row240
or in the same column. Therefore, for the core computation, the amount of data to be accessed by241

a CPE is (Ni × No

8 + Ni × Bs

8 +
No

8 ×
Bs

8). The amount of vmadd instructions is (Ni × No

8 ×
Bs

8)/4.242
We use vload instruction for data access, so the theoretical CDR of the core computation is243

(Ni × No

8 ×
Bs

8)/4

(Ni × No

8 + Ni × Bs

8 +
No

8 ×
Bs

8)/4
. (2)

Assuming that Ni , No , and Bs have the same value, the CDR can meet the requirement (CDR ≥244
3) of the LDM-cache pattern when the value is larger than 51, which can be realized in most of the245
convolution layers. For values that are not a multiple of 8, zero padding can be adopted and will not246
cause too much decrease in performance. Therefore, for brevity, we focus on the configurations247
that are a multiple of 8 in the following discussion. The following sections will show the detailed248
implementation and optimization methods based on Algorithm 2.249

3.3 LDM-Related Optimization250

LDM-related optimization methods are focused on an effective implementation for outer loops251
of the algorithm. The targets are to realize the overlap of data access from main memory to the252
LDM and the core computation of the CPE mesh, so as to increase MBWMEM−>LDM and reduce253
RBWMEM−>LDM .254

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:9

ALGORITHM 2: Matrix Multiplication–Based Convolution Algorithm

1: //IN [Bs][Ni][Ri][Ci], OUT [Bs][No][Ro][Co], CONVW [No][Ni][Kr][Kc], and b[No] are input/output

feature maps, convolutional kernels, and bias

2: //Kr = Kc = K represent the number of rows and columns of a two-dimensional convolutional kernel

3: //The output images OUT are initialized with the bias b
4: for cRo := 0 : 1 : Ro do

5: for cCo := 0 : 1 : Co do

6: Do[0 : No][0 : Bs] = (OUT [0 : Bs][0 : No][cRo][cCo])T

7: for cKr := 0 : 1 : Kr do

8: for cKc := 0 : 1 : Kc do

9: W [0 : No][0 : Ni] = CONVW [0 : No][0 : Ni][K − 1 − cKr][K − 1 − cKc]

10: Di [0 : Ni][0 : Bs] = (IN [0 : Bs][0 : Ni][cRo + cKr][cCo + cKc])T

11: Core computation: Do+ =W × Di

12: end for

13: end for

14: OUT [0 : Bs][0 : No][cRo][cCo] = (Do[0 : No][0 : Bs])T

15: end for

16: end for

3.3.1 Optimized Data Layout. The input data of the core computation is a part of the input/ 255
output feature maps and the convolutional kernels. Based on the original data layout, data in 256
W , Di , Do is not stored continuously in IN , OUT , and CONVW , so the MBWMEM−>LDM will 257
be limited due to small data access block. To increase MBWMEM−>LDM , we redesign the data 258
layout of the input/output feature maps and the convolutional kernels as IN [Ri][Ci][Ni][Bs], 259
OUT [Ro][Co][No][Bs], and CONVW [Kr][Kc][No][Ni]. In addition, we rotate the convolutional 260
kernels on Kr and Kc dimensions to eliminate the coordinate transform in line 6 of Algorithm 2. 261
For IN and OUT , we put Bs as the lowest dimension, which can eliminate the data transposition 262
in lines 3, 7, and 11 of Algorithm 2, and can support vectorized operations on the Bs dimension in 263
the core computation. 264

3.3.2 Double Buffering. Double buffering is adopted to overlap the data access from main mem- 265
ory to the LDM and the core computation. Because the DMA is asynchronous, we design two LDM 266
buffers of the same size. While the data in one buffer is used for core computation, the data to be 267
used in next core computation can be loaded into another buffer. Note that the double buffering de- 268
sign halves the maximum available space of the LDM for one computation iteration, which means 269
that for one CPE, only a 32KB LDM is available for the core computation. 270

3.3.3 LDM Blocking. We consider the total LDM usage of 64 CPEs in the core computation with 271
different convolutional-layer configurations. It can be described as follows: 272

(Ni × No + Ni × Bs + No × Bs) × DataLen, (3)

where DataLen is the number of bytes for the data type. Assuming that Ni , No , and Bs are equal 273
to 256, which are relatively large configurations for most convolutional layers, and the data type 274
is double precision, the total LDM usage of 64 CPEs is 3 × 256 × 256 × 8 Bytes = 1,536 KBytes. 275
By using register communication techniques, the data stored in one CPE’s LDM can be shared to 276
other CPEs (more details will be shown in Section 3.4.1), so the exact LDM usage of each CPE is 277
1, 536 KB/64 = 24 KB. Therefore, for most convolutional layers, a 32KB LDM is enough for the core 278
computation, and in other words, it is possible to take advantage of the remaining LDM spaces to 279
improve the overall performance of the implementation. 280

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:10 W. Zhao et al.

ALGORITHM 3: Optimized Algorithm With LDM Blocking

1: //IN [Ri][Ci][Ni][Bs], OUT [Ro][Co][No][Bs], CONVW [Kr][Kc][No][Ni], and b[No] are input/output

feature maps, convolutional kernels, and bias

2: //Kr = Kc = K represent the number of rows and columns of a two-dimensional convolutional kernel

3: //W ,W̃ and Di , D̃i represent the double buffering for weight and input feature maps

4: //The output images OUT are initialized with the bias b
5: for cRo := 0 : 1 : Ro do

6: for cCo := 0 : bC : Co do

7: DMA get Do[0 : bC][0 : No][0 : Bs]← OUT [cRo][cCo : cCo + bC][0 : No][0 : Bs]

8: for cKr := 0 : 1 : Kr do

9: for cKc := 0 : 1 : Kc do

10: DMA get:

11: W̃ [0 : No][0 : Ni]← CONVW [cKr][cKc][0 : No][0 : Ni]

12: D̃i [0 : bC][0 : Ni][0 : Bs]← IN [cRo + cKr][cCo + cKc : cCo + cKr + bC][0 : Ni][0 : Bs]

13: //Core computation:

14: for cbC := 0 : 1 : bC do

15: Do[cbC]+ =W × Di [cbC]

16: end for

17: Check DMA get W̃ , D̃i finished.

18: ExchangeW ,Di with W̃ , D̃i

19: end for

20: end for

21: DMA put Do[0 : bC][0 : No][0 : Bs]→ OUT [cRo][cCo : cCo + bC][0 : No][0 : Bs]

22: end for

23: end for

In the convolution algorithm, the convolutional kernel is shared by the computation of values281
in the same output image. In the core computation of Algorithm 2, the data of convolutional282
kernel (W) is only used for one core computation corresponding to the values in the output283
feature maps at coordinate (cRo, cCo). To improve the data reuse of W , and in the meantime284
to improve the CDR of the core computation, we propose an LDM blocking strategy shown in285
Algorithm 3.286

In the core computation of Algorithm 3, we loadbC times more data of input/output feature maps287
and reuse the data of convolutional kernels to completebC matrix multiplication computation. The288
RBWMEM−>LDM is reduced, and the CDR of a CPE is289

bC × Ni × No

8 ×
Bs

8 /4

(Ni × No

8 + bC × Ni × Bs

8 + bC × No

8 ×
Bs

8)/4
, (4)

which is greater than Equation (2). The largerbC we choose, the greater CDR we can get. However,290

bC is limited by the available size of the LDM, and we can maximize the value to take full advantage291
of the LDM.292

3.4 Register-Related Optimization293

Register-related optimization methods mainly focus on effectively mapping the core computation294
onto an 8 × 8 CPE mesh. Two key problems are targeted in our work: (i) to realize the register-level295
data sharing between CPEsto reduce the RBWLDM−>REG for each CPE, and (ii) to take full use of296
the vector register to implement the computation efficiently on a CPE.297

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:11

Fig. 3. Register communication example on 4 × 4 CPE mesh.

3.4.1 Register Communication. In the core computation, a CPE is responsible for a No

8 ×
Bs

8 298

block of Do , which requires an No

8 × Ni tile ofW and an Ni × Bs

8 tile of Ni . CPEs in the same row 299
of the mesh share the tile ofW , and CPEs in the same row of the mesh share the tile of Ni , which 300
perfectly matches the register communication feature of the CPE mesh. However, there are some 301
limitations of the register communication feature: (i) the send and receive buffers designed for 302
the register communication are simply FIFOs with limited size (4 × 256 bits); (ii) the data received 303
though the register communication buses has no information of the source CPE; and (iii) if the 304
send and receive buffer are both full, the source CPE will halt. 305

Considering the limitations, we carefully design a register communication strategy for matrix 306
multiplication computation. For simplicity, we take a 4 × 4 CPE mesh as an example to intro- 307
duce the design, shown in Figure 3. We label the CPEs with coordinates (0, 0)–(3, 3) from top left 308
to bottom right. Di , W , and Do are divided into 4 × 4 parts and are labeled as Di (0, 0)–Di (3, 3), 309
W (0, 0)–W (3, 3), and Do (0, 0)–Do (3, 3). For a given pair of (i, j), the computation of Do (i, j) can 310
be described as follows: 311

Do (i, j)+ =
3∑

k=0

W (i,k) × Di (k, j), (5)

which can be done in four steps by CPE(i, j). Di (i, j), W (i, j), and Do (i, j) are preloaded into 312
the LDM of CPE(i, j) before executing the core computation. Without loss of generality, we take 313
CPE(2, 1) as an example to show the process. 314

• Step 0: First, for all j ∈ {0, 1, 2, 3}, CPE(0, j) loads data of Di (0, j) from the LDM and sends 315
the data to other CPEs in the same column by register communication. Thus, CPE(2, 1) 316
can receive the data of Di (0, 1). Then, for all i ∈ {0, 1, 2, 3}, CPE(i, 0) loads data of W (i, 0) 317
from the LDM and sends the data to CPEs in the same row. CPE(2, 1) can receive the data of 318
W (2, 0).Do (2, 1) can be loaded from the LDM of CPE so that the computation ofDo (2, 1)+ = 319
W (2, 0) × Di (0, 1) can be done. 320

• Step 1: First, CPEs with coordinates (1, j) load data of Di (1, j) from the LDM and send the 321
data to CPEs in the same column. Then, CPEs with coordinates (i, 1) load data of W (i, 1) 322
and send CPEs in the same row. Thus, CPE(2, 1) can receive the data of Di (1, 1) through 323

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:12 W. Zhao et al.

Fig. 4. Register blocking strategy on one CPE.

column register communication, and can load W (2, 1) and Do (2, 1) from the LDM, to324
compute Do (2, 1)+ =W (2, 1) × Di (1, 1).325

• Step 2: CPEs with coordinates (2, j) and (i, 2) load the data of Di (2, j) andW (i, 2), and send326
to the same column and same row, respectively. Then CPE(2, 1) can receive the data of327
W (2, 2) through row register communication and loadW (2, 2) and Do (2, 1) from the LDM.328
The computation of Do (2, 1)+ =W (2, 2) × Di (2, 1) can be done.329

• Step 3: Similarly, CPEs with coordinates (3, j) and (i, 3) load and send the data ofDi (3, j) and330
W (i, 3), respectively. Correspondingly, CPE(2, 1) can receive W (2, 3) and Di (3, 1) through331
row and column register communication, and finally finish the computation of Do (2, 1)+ =332
W (2, 3) × Di (3, 1).333

Based on the proposed register communication strategy, the core computation can be done on334
an 8 × 8 CPE mesh following eight steps with highly efficient data sharing between CPEs.335

3.4.2 Register Blocking. In each step of the register communication process, the computation336
task of a CPE is to calculate the matrix multiplication ofW (i, j) and Di (i, j). The size of the blocks337

are (No

8 ×
Ni

8) and (Ni

8 ×
Bs

8), respectively.338
For each CPE, there are only 32 vector registers, including the zero register and the stack pointer339

(sp) register, so the number of available registers is less than 30 for the implementation. We should340
consider to use vectorized computation to improve the data reuse in registers, and to reduce the341
data dependency to achieve an efficient instruction flow. Therefore, we propose a register blocking342
strategy to implement the computation in each step. Figure 4 shows the details.343

We use four vector registers to load Di , denoted by A[0 : 3], and four vector registers to loadW ,344
denoted by B[0 : 3]. In addition, 16 vector registers are used for storing the data of Do , denoted by345
C[0 : 15]. We define the following process as a kernel task of the register blocking design:346

• First, we load 16 values in a row of D (i, j) into A[0:3], which can be done by 4vload instruc-347
tions. We load 4 values in a column ofW (i, j) and duplicate the values to fill B[0:3], which348
can be done by 4 vlde instructions.349

• Second, we load 4 × 16 values from Do (i, j) into C[0:15] using 16 vload instructions.350
• Third, for i, j ∈ {0, 1, 2, 3}, we calculate Equation (6) using 16 v fmad instructions.351

C[i + 4 ∗ j]+ = A[i] × B[j] (6)

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:13

Fig. 5. Instruction-related optimization for the kernel task.

In addition, 24 registers are used in the kernel task. As we can see from Figure 4, to finish the 352

calculation of 4 × 16 values ofDo (i, j), Ni

8 kernel tasks are required. During this process, A[0:3] and 353

B[0:3] are reloaded for Ni

8 times, whereas C[0:15] only need to be loaded once in the first kernel 354
task, which improves the data reuse at register level and thus reduces the RBWLDM−>REG . Because 355
there is no data dependency between the v fmad instructions in a kernel task, one instruction can 356
be issued in each CPU cycle, which can increase the EE of the implementation. 357

3.5 Instruction-Related Optimization 358

We adopt instruction-related optimization methods to overlap the data loading and computation 359
instructions and to further improve the EE in the kernel task. Figure 5(a) shows the instruction 360
flow based on a direct implementation of the kernel task. It takes 26 CPU cycles to issue the 361
instructions, among which there are 16 v fmad instructions. The EE is 16/26 = 61.5%. As we can 362

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:14 W. Zhao et al.

ALGORITHM 4: 4-CG Implementation of the Convolution Algorithm

1: //Assume that IN [Ri][Ci][Ni][Bs], OUT [Ro][Co][No][Bs], CONVW [Kr][Kc][No][Ni], and b[No] are

input/output feature maps, convolutional kernels, and bias

2: //Kr = Kc = K represent the number of rows and columns of a two-dimensional convolutional kernel

3: //W ,W̃ and Di , D̃i represent the double buffering for weight and input feature maps

4: //The output images OUT are initialized with the bias b
5: //Parallel execution on four CGs

6: for cд := 0 : 1 : 4 do

7: for cRo := 0 : 1 : Ro

4 do

8: for cCo := 0 : bC : Co do

9: DMA get Do[0 : bC][0 : No][0 : Bs]← OUT [cд × Ro

4 + Ro][cCo : cCo + bC][0 : No][0 : Bs]

10: for cKr := 0 : 1 : Kr do

11: for cKc := 0 : 1 : Kc do

12: DMA get:

13: W̃ [0 : No][0 : Ni]← CONVW [cKr][cKc][0 : No][0 : Ni]

14: D̃i [0 : bC][0 : Ni][0 : Bs]← IN [cд × Ro

4 + cRo + cKr][cCo + cKc : cCo + cKr + bC][0 :

Ni][0 : Bs]

15: for cbC := 0 : 1 : bC do

16: Core computation: Do[cbC]+ =W × Di [cbC]

17: end for

18: Check DMA get W̃ , D̃i finished.

19: ExchangeW ,Di with W̃ , D̃i

20: end for

21: end for

22: end for

23: OUT [cд × Ro

4][cCo : cCo + bC][0 : No][0 : Bs] = Do[0 : bC][0 : No][0 : Bs]

24: end for

25: end for

see, in cycles 4, 8, 23, and 24, two instructions can be issued to pipeline P0 and P1 simultaneously,363
because there is no data dependency and the instructions can be executed on P0 and P1 separately.364
Only data loading instructions (vldr can load the data into a vector register and send out through365
row register communication) are issued in the first few cycles, which will lower the EE of the366
implementation.367

Considering that Ni

8 kernel tasks are required to calculate a 4 × 16 block of Do (i, j), we unroll368

the Ni

8 kernel tasks and reorder the instructions to overlap the vldr instructions of a kernel task369
with the v fmad instructions at the end of the previous kernel task. The implementation after370
loop unrolling and instructions reordering is shown in Figure 5(b), where only 17 CPU cycles are371
required to finish a kernel task and the EE is improved to 16/17 = 94.1%.372

3.6 CG-Level Parallel Scheme373

Based on the preceding optimization methods, the convolution algorithms can be mapped onto a374
CG efficiently. Considering that there are four CGs in a SW26010 processor, we can further design375
the parallel scheme for four CGs. The simplest but most efficient way is to introduce parallelism on376
the outermost loop (Ro). As discussed in Section 2.2, data can be shared by four CGs without extra377
data copy. Therefore, we can set the data of input/output feature map, convolutional kernel, and378
bias to the shared mode, and implement a four-CG convolution algorithm as shown in Algorithm 4.379

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:15

ALGORITHM 5: Configuration Generation Algorithm

1: Test Set 1 : Bs = 128, Ro = Co = 32, K = 3

2: for No = 64;No <= 384;No+ = 64 do

3: for Ni = 64;Ni <= 384;Ni+ = 64 do

4: CONV(Bs ,Ni ,No ,Ro ,Co ,K)
5: end for

6: end for

7: Test Set 2 : Bs = 128, Ni = No = 128, K = 3

8: for Ro = Co = 8;Ro <= 128;Ro+ = Ro ,Co+ = Co do

9: CONV (Bs ,Ni ,No ,Ro ,Co ,K)
10: end for

11: Test Set 3 : Bs = 128, Ni = No = 128, Ro = Co = 64

12: for K = 3;K <= 11;K+ = 2 do

13: CONV (Bs ,Ni ,No ,Ro ,Co ,K)
14: end for

15: Test Set 4 : Ni = No = 128, Ro = Co = 64, K = 128

16: for Bs = 32;Bs <= 512;Bs∗ = 2 do

17: CONV (Bs ,Ni ,No ,Ro ,Co ,K)
18: end for

3.7 Single-Precision Support 380

During the preceding design and optimization process, we consider double precision (64 bits) as the 381
data representation for both feature maps and weights. However, unlike in most scientific applica- 382
tions, single precision (32 bits) is sufficient for training CNN models in deep learning applications. 383
Therefore, to support practical CNN training tasks, we further improve our optimized algorithm 384
implementation to support single-precision operations. 385

Originally designed for supporting major scientific applications that mostly rely on double- 386
precision data types, the features of the SW26010 architecture, such as vectorized instructions 387
and register communication operations, are generally more suitable to handling double-precision 388
operations. There is no special optimization on hardware for single-precision operations on 389
SW26010. Therefore, theoretically, the peak performance for single-precision computation is 390
equal to that for double precision. In practice, there will be performance loss due to the lack 391
of support for single-precision operation in the instruction set, which will be discussed in the 392
following. 393

A straightforward way to support single precision is to redesign the kernel task instruction 394
flow based on single-precision instructions. The major problem is that there is no instruction like 395
vldr or vlddec for single-precision data in the instruction set of SW26010. Instead, we should first 396
load four single-precision data into a vector register using the vlds or vldse instruction, then call 397
register communication using the putr or putc instruction. Therefore, for single precision, the 398
instruction flow of the kernel task has eight more instructions than the double-precision imple- 399
mentation shown in Figure 5, and more importantly, these instructions cannot be overlapped by 400
computation instructions due to the register dependency. Eight more cycles in the kernel task will 401
lower the EE to 16/(17 + 8) = 64%, which indicates that the overall performance loss will be more 402
than 30% (compared to 94.1%). 403

In the straightforward way, all data accessed in the kernel task requires extra cycles. Consid- 404
ering that there is data reused in the core computation (e.g., W will be reused cbC times), we 405
propose another way to reduce the overall extra cycles for single-precision data access, called 406

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:16 W. Zhao et al.

Table 3. Specifications of SW26010 and the K40m/K80m GPU

Specifications SW26010 NVIDIA K40m NVIDIA K80m

Release Year 2014 2013 2014

TDP 250W 235W 375W

Number of Cores 260 2,880 (15 SM1) 4,992 (26 SM)

Memory
Capacity 32GB 12GB 24GB

Bandwidth 144GB/s 288GB/s 480GB/s

Peak Perf.
Float 3.02TFlops 4.29TFlops 8.74TFlops

Double 3.02TFlops 1.43TFlops 2.91TFlops

1Each streaming multiprocessor (SM) has 192 CUDA cores.

a float2double implementation. After we load the data from the main memory to the LDM, we407
cast the single-precision data in the LDM to double precision and then do the core computation408
in double precision. Correspondingly, we cast the double-precision data to single precision409
before storing the computation results back to the main memory. The data casting can be410
implemented using a flow of vlds/vsts (for single-precision) and vldd/vstd (for double-precision)411
instructions.412

3.8 Evaluation413

To show the performance improvement obtained from the proposed algorithm design and op-414
timization methods, we first evaluate the performance of the implementation based on double415
precision.416

Different convolutional layer configurations listed in Table 1 will lead to different practical417
performance. Since the configurations change with CNN models and applications irregularly,418
it is unnecessary to traverse all possibilities. Therefore, we derive the test cases according to419
Algorithm 5, where four sets of test cases are generated targeting different values of Ni/No ,420
Ro(Co) K , and Bs separately.421

Table 3 lists the specifications of SW26010 and NVIDIA K40/K80 GPUs. Taking the peak per-422
formance in both single and double precision into consideration, we choose the K40m GPU as a423
comparison to SW26010 in our evaluation. We run the test cases using our implementation and424
the convolution subroutine of cuDNN (v5.1) on the NVIDIA K40m GPU. The evaluation results are425
summarized into four categories to show how the performance changes with different configura-426
tions as shown in Figures 6 and 7.427

As we can see from Figure 6(a), the performance of our implementation is more sensitive to428
the value of Ni . As discussed in Section 3.4.2, in each step of the register communication process,429
Ni

8 kernel tasks are executed. Therefore, larger Ni will lead to a longer process with consecutive430
kernel tasks, which can provide better performance. Figure 7(a) shows that the performance with431
a small value of Ro (andCo) is relatively low, which is because we use a double buffering design to432
achieve the overlap of the data access from main memory to the LDM and the core computation.433
The design can be considered as a pipeline, and there is a starting phase at the beginning of the434
process. Small Ro and Co will shorten the pipeline and therefore lower the overall performance.435
The performance with different No and different K is relatively stable according to Figure 6(b) and436
Figure 7(b).437

In Figure 7(c), small Bs (e.g., 32 and 64) cannot take full use of the 8 × 8 CPE mesh, so the438
performance penalty of the proposed implementation is quite apparent. For large Bs (e.g., 256 and439

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:17

Fig. 6. Performance evaluation on Ni and No (vs. cuDNNv5.1 on the K40m GPU in double precision).

512), the performance improvement is also apparent since large Bs will benefit the performance 440
of the innermost matrix multiplication computation in our design. 441

Considering all test cases, the performance of our implementation ranges from 1.3TFlops to 442
2.0TFlops, and the average performance is about 1.68TFlops, which is about 56% of the peak per- 443
formance of SW26010. For the evaluation of cuDNN on the K40m GPU, the average performance is 444
about 0.47TFlops. The peak double-precision performance of K40m is 1.43TFlops, so the efficiency 445
of cuDNN is about 32%. Compared to cuDNN, our work can achieve about 3.6 times speedup on 446
performance and about 24% improvement on hardware efficiency. 447

To illustrate the effectiveness of the optimization methods proposed in this article, we show the 448
performance of the implementations after adopting different optimization methods in Figure 8. 449
In our work, we take the implementation of Algorithm 2 as the basic version and follow the 450
steps of adopting vectorization design, LDM-related optimization, register-related optimization, 451
and instruction-related optimization successively, which forms an optimization process guided 452
by the performance model. Finally, we propose four-CG parallelization design and introduce 453
the implementation based on Algorithm 4. As we can see, in the optimization process, distinct 454
performance improvement can be achieved in each step, and 48 times speedup is achieved in total. 455

Generally speaking, some of the proposed optimization techniques, such as vectorization, 456
register blocking, and instruction-related optimization, are also applicable to other heterogeneous 457
architectures, such as the GPU and Intel Xeon Phi. In our work, we consider the features of 458

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:18 W. Zhao et al.

Fig. 7. Performance evaluation on Ro(Co), K, and Bs (vs. cuDNNv5.1 on the K40m GPU in double precision).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:19

Fig. 8. Performance improvement after adopting different optimization methods.

Fig. 9. Average performance and efficiency in float/double precision (training VGG-16 model).

the SW26010 many-core architecture and customize the practical optimization strategies for 459
these general optimization techniques. In addition, other optimization techniques, such as LDM 460
utilization and register communication, are specific to the SW26010 architecture. In summary, 461
both the architecture-specific optimization techniques and the architecture-customized strategies 462
for general optimization techniques are considered as architecture-oriented optimization methods, 463
which can also be general for other application and algorithm optimization problems on the 464
SW26010 many-core architecture. 465

We further evaluate the performance of our convolution implementation based on single- 466
precision data representation, which is generally used in the practical training process of CNN 467
models. As discussed in Section 3.7, a straightforward implementation and a float2double imple- 468
mentation are proposed. In the experiment, we train VGG-16 [21] with both float and double data 469
precision based on our work on SW26010 and cuDNN on K40m. There are 13 convolutional lay- 470
ers with different configurations in VGG-16. We show the average performance and hardware 471
efficiency of the convolutional layers in Figure 9. 472

Considering the performance on SW26010, the float2double implementation has about 10% im- 473
provement on the hardware efficiency over the straightforward implementation. Therefore, we 474
adopt the float2double implementation when training CNN models with single precision. To sup- 475
port more efficient computation in lower data precisions, such as single or half precision, further 476
improvement to the SW26010 architecture is necessary and should target two main aspects. The 477
first is to provide optimized SIMD operations for lower data precisions, such as 8× SIMD in single 478
precision or 16× SIMD in half precision, which can be realized by using the current 256-bit vector 479

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:20 W. Zhao et al.

registers and adopting hardware optimization for the ALU part in CPEs. The second aspect is to480
support more completed low precision instructions (e.g., vldr for single/half precision), so as to481
improve the overlapping of computation and data access (or data transferring).482

4 TRAINING PROCESS OPTIMIZATION483

Based on the proposed algorithm optimization methods in Section 3, we further design the swDNN484
library and a customized Caffe framework, called swCaffe, which can provide a complete solution485
to train CNN models on the Sunway TaihuLight supercomputer.486

4.1 swDNN Library487

Section 3 focused on detailed algorithm and code optimization methods for convolution algorithm,488
which is the most computational intensively part in a CNN. To provide a high-performance so-489
lution for the complete training process of a CNN on the Sunway TaihuLight supercomputer, we490
further put efforts on optimizing the computation of all kinds of layers with all possible conditions,491
as well as the backward propagation process to support practical CNN models.492

First, we consider different conditions for a convolutional layer. The proposed implementation493
performs well when the numbers of input and output channels are large enough to assign the494
tasks to all CPEs. Usually for the first few layers in a practical CNN, the number of channels is495
small. In this case, the performance of the proposed implementation is poor, so we provide an496
alternate implementation based on a time-domain transformation method proposed by Jia et al.497
[13], which contains an Img2Col function to transform the input maps to a matrix and a general498
matrix-matrix multiplication (GEMM) function to do the computation. The GEMM implementation499
on SW26010 shares the same core computation with the proposed convolution algorithm, so we500
can skip over the optimization details for brevity. Different implementations are chosen under501
different conditions, together to support all kinds of convolutional layers.502

The fully connected layer, which is realized through matrix multiplication, involves the second503
largest amount of computation in a CNN. The implementation is also based on GEMM.504

In addition to the computation-intensive layers, such as convolutional and fully connected505
layers, other layers can be considered as memory-intensive layers, such as pooling layers,506
normalization layers, and activation function layers. Memory access bandwidth is the key factor507
that affects the performance of these layers. As shown in Algorithms 1 and 3, the original data508
layout is (Bs , No , Ro ,Co) and the optimized data layout is (Ro ,Co ,No , Bs). Therefore, as discussed in509
Section 3.1, we propose parallel implementations using CPEs with task partition along the output510
channel dimension(No), which in both data layout cases can guarantee a successive memory511
access with large granularity, so as to take fully advantage of the memory bandwidth. Similarly,512
data transformation operations, such as the data layout and Img2Col transformation can also be513
accelerated using CPEs.514

Usually the output layer of a CNN is a softmax layer. The algorithm of softmax is hard to be515
parallelized, and the computation amount of the softmax layer is rather small. Therefore, there is516
no need to design a CPE-based implementation for the softmax layer.517

Each iteration of the training process contains a forward process and a backward process. The518
preceding implementations are focused on the forward process. The output of a forward process519
is the classification results given by the current model. In the backward process, we first evaluate520
the error of the output results referring to the true labels of the input samples. Then we propagate521
the error back from the output layer to the input layer and adjust the weights in the layers to522
minimize the error. In each layer, the backward process shares similar computation patterns523
with the forward process but involves approximately twofold computation operations for both524
error propagation and weight update. Therefore, the algorithm design and optimization for the525

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:21

Table 4. Summary of the swDNN Library

Parallel Strategy

Layers Conditions Using CPE 1-CG 4-CG

Convolution
Ni and No >= 64 YES Data Transform + Proposed methods

Ni or No < 64 YES Img2Col + GEMM On batch size

Fully connected YES GEMM On batch size

Pooling Max/Min/Avg YES On output channel On batch size

Activation Function ReLU, Tanh, etc. YES On output channel On batch size

Normalization YES On output channel On batch size

Softmaxr NO None (only MPE) On batch size

backward process of a layer is similar to the forward process but has different input/output data. 526
We implement CPE-based backward process for each layer to provide a highly efficient backward 527
propagation in the training process. 528

Integrating the preceding implementations for different layers and corresponding data trans- 529
formation functions, we present a library for accelerating deep neural networks on the SW26010 530
many-core architecture, called swDNN. A summary of the swDNN library is shown in Table 4. For 531
each subroutine in swDNN, we provide two implementations. The basic implementation utilizes 532
one CG of SW26010. For the training process of large CNN models, we provide four-CG parallel 533
implementation to take advantage of the all-shared memory. The four-CG parallel strategy is to 534
adopt the task partition along the outermost dimension of the data. For the convolutional layers 535
with optimized data layout, the outermost dimension is Ro , as introduced in Section 3.6. For other 536
layers with the original data layout, the outermost dimension is batch size (Bs). 537

4.2 swCaffe Framework 538

To support more efficient CNN model development and training task deployment, we port Caffe, 539
an open-source deep learning framework, onto the Sunway TaihuLight supercomputer. The origi- 540
nal Caffe calls the BLAS library to do the arithmetic computation. On Sunway TaihuLight, swBLAS 541
is one of the fundamental libraries that provide CPE-based implementations on one CG. We con- 542
sider the Caffe framework depending on swBLAS as the basic version, which has no specialized 543
optimization for the CNN models. 544

Based on the basic version, we propose three optimization methods to customize the Caffe 545
framework for the SW26010 many-core architecture, and finally we present swCaffe. 546

First, we implement swDNN-based layers, as listed in Table 4, to substitute for the original 547
implementations of different layers in Caffe. 548

Second, we add new data transformation layer to swCaffe. In most CNN models, there are con- 549
secutive convolutional layers and pooling layers that can be accelerated with optimized data lay- 550
out, such as the 2nd to 5th convolutional layers in AlexNet [14] and the 2nd to 13th convolutional 551
layers in VGG-16. Here we take the convolutional layers in VGG-16 as examples. If we do data 552
transformation for input/output feature maps and weights in each layer, the data transformation 553
time is about 27% of the total execution time of all convolutional layers, as listed in Table 5. We add 554
a dedicated data transformation layer into swCaffe so that for the consecutive convolutional layers, 555
the data transformation of input/output feature maps is performed only once. The data transfor- 556
mation time is reduced to 16% of the total execution time of all convolutional layers. Specifically, 557
the data transformation time for feature maps is reduced to about one fourth (from 3.16s to 0.73s). 558

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:22 W. Zhao et al.

Table 5. Computation and Data Transformation Time of swCaffe With/Without a Data

Transformation Layer (One Iteration of Training VGG-16 with Bs = 128)

Computation

Data Transformation

TotalWeights Feature Maps Total

Without Time(s) 13.55 1.86 3.16 5.02 18.57

Data Trans. Layer Percentage 73% 10% 17% 27% 100%

With Time(s) 13.49 1.83 0.73 2.56 16.05

Data Trans. Layer Percentage 84% 11% 5% 16% 100%

Fig. 10. (a) Caffe using a four-CG implementation in swDNN. (b) Four-CG design for swCaffe.

Third, we extend swCaffe to support a four-CG parallel in the complete training process. A559
straightforward way is to utilize four-CG implementations in swDNN for each layer, and the par-560
allel process is shown in Figure 10(a). As we can see, the training process is started on CG 0. For561
layers that have four-CG parallel implementations in swDNN, we call pthread_create to start three562
computing threads on CG1-CG3. After the computation finished, we call pthread_join to release563
the computing threads and continue the process on the main thread. In a CNN model, when most564
of the layers are based on swDNN, calling pthread_create and pthread_join repeatedly will lead to565
a relatively large overhead for creating or releasing the thread context.566

Addressing the preceding problems, we propose a framework-level parallelization design as567
shown in Figure 10(b). At the beginning of the process, we call pthread_create to start four threads568
on four CGs, all of which will be activated during the whole training process. For layers that can be569
implemented in parallel, such as Layer 1 in Figure 10, computation can be done in four CGs without570
extra overhead. For layers that cannot be implemented in parallel, such as Layer 2, we first call a571
simple synchronization function to guarantee that all four threads are at the same stage, then do the572

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:23

ALGORITHM 6: Description of Synchronization Function

1: //Initialization

2: set NThread = 4

3: //Siдnal[NThread] is used to initiate synchronization

4: //Respond[NThread] is used to confirm synchronization

5: for i := 0 : 1 : NThread do

6: set Siдnal[i] = 0

7: set Respond[i] = 0

8: end for

9: //Function definition

10: define Simple_Sync():

11: set thread_id = дet_thread_id ()
12: if thread_id == 0 then

13: for i := 1 : 1 : NThread do

14: set Siдnal[i] = 1 //initiating synchronization on CG 0

15: end for

16: set nRespond = NThread − 1

17: while nRespond > 0 do

18: //waiting for the confirmation from CG 1, 2, 3

19: for i := 1 : 1 : NThread do

20: if Respond[i] == 1 then

21: set nRespond = nRespond − 1

22: set Respond[i] = 0

23: end if

24: end for

25: end while

26: else

27: //waiting for synchronization on CG 1,2,3

28: while Siдnal[thread_id]! = 1 do

29: //waiting for synchronization signal

30: end while

31: set Siдnal[thread_id] = 0

32: set Respond[thread_id] = 1 //set the confirmation

33: end if

computation on CG 0, and finally call the synchronization function again to continue the process 573
on four CGs. Algorithm 6 describes the synchronization function(Simple_Sync()), which is based 574
on an handshake (initiation-confirmation) strategy through the semaphore (Siдnal[NThread] and 575
Respond[NThread]) stored in the shared memory.Q3

576

4.3 Evaluation 577

The performance of a complete training process is evaluated based on the training VGG-16 model, 578
which is one of the typical and widely used CNN models. To show the performance improvement 579
obtained from different framework-level optimization methods, we train VGG-16 using three ver- 580
sions of Caffe on Sunway TaihuLight, including the following: 581

• Caffe-swBLAS: The basic swBLAS-based Caffe, utilizing only one CG on SW26010. 582
• Caffe-swDNN: Caffe with swDNN-based layer implementations, utilizing four CGs on 583

SW26010. 584

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:24 W. Zhao et al.

Fig. 11. Performance evaluation of the training VGG-16 model.

• swCaffe: swDNN-based Caffe with customized data transformation layers and framework585
parallelization design for four CGs.586

For comparison, we provide the performance of training VGG-16 with Caffe on Intel multicore587
CPUs (2×E5-2670v3, 24 cores, with 128GB memory) and the NVIDIA K40m GPU. The training588
dataset is the ImageNet (ILSVRC) 2012 image classification dataset. We use sample per second589
(sample/s) as the metric to show the average training speed. Results are shown in Figure 11.590

As we can see, for the single-precision–based training process, the proposed swCaffe framework591
can achieve about 4.6 times speedup over the basic swBLAS-based framework, mainly because of592
the utilization of four CGs. In addition, the optimization targeting data transformation layers and593
four-CG parallelization can provide about 20% (speedup from 3.8× to 4.6×) performance improve-594
ment. Overall, the proposed optimization methods are proven to be effective.595

Compared to CPU and GPU results, swCaffe is 4.6 times more efficient than two 12-core CPUs596
(based on OpenBLAS) and is nearly half the performance of K40m (based on cuDNNv5.1). As a597
supplement, the performance of the double-precision–based training process is also provided. The598
double-precision performance of swCaffe is even higher than the single-precision performance on599
SW26010, and is 8.9 and 1.8 times that of CPUs and the K40m GPU, respectively.600

5 CONCLUSIONS601

In this article, we present our work on optimizing the CNN on the SW26010 many-core processor.602
We propose architecture-oriented optimization methods for the algorithm implementation and603
framework parallelization. Based on the proposed optimization methods, we develop a customized604
deep learning library (swDNN) and a customized Caffe framework (swCaffe).605

Evaluation results show that the proposed optimization methods can bring 48 times perfor-606
mance improvement to the convolution routine in swDNN compared to the basic implementation.607
The optimized swCaffe framework achieves 4 times performance improvement for the complete608
training process of the VGG-16 network compared to the original Caffe with swBLAS. Moreover,609
the proposed convolution routine in swDNN and the swCaffe framework show nearly half the610
performance of the cuDNN library (on a K40m GPU) in single precision while achieving 3.6 times611
and 1.8 times speedup over cuDNN (on a K40m GPU) in double precision, respectively.612

The presented work can provide highly efficient solutions for training CNN models with the613
SW26010 many-core processor. Moreover, it proves the capability of deploying large-scale deep614
learning applications on the Sunway TaihuLight supercomputer.615

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer 13:25

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al. 2016. 616
TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467. 617

[2] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High performance convolutional neural networks for docu- 618
ment processing. In Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition. 619

[3] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Dian- 620
nao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGPLAN Notices 49, 621
269–284. 622

[4] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and 623
Zheng Zhang. 2015. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. 624
arXiv:1512.01274. 625

[5] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, et al. 2014. DaDianNao: A machine- 626
learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. 627
IEEE, Los Alamitos, CA, 609–622. 628

[6] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel- 629
hamer. 2014. cuDNN: Efficient primitives for deep learning. arXiv:1410.0759. 630

[7] Ronan Collobert, Samy Bengio, and Johnny Marithoz. 2002. Torch: A Modular Machine Learning Software Library. 631
Idiap. 632

[8] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. 2011. Context-dependent pre-trained deep neural networks for 633
large-vocabulary speech recognition. IEEE Transactions on Audio Speech and Language Processing 20, 1, 30–42. 634

[9] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier 635
Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. ACM SIGARCH Computer Architecture 636
News 43, 92–104. 637

[10] Jiarui Fang, Haohuan Fu, Wenlai Zhao, Bingwei Chen, Weijie Zheng, and Guangwen Yang. 2017. swDNN: A library for 638
accelerating deep learning applications on Sunway TaihuLight. In Proceedings of the Parallel and Distributed Processing 639
Symposium. 615–624. 640

[11] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xiaomeng Huang, Chao Yang, et al. 2016. The 641
Sunway TaihuLight supercomputer: System and applications. Science China Information Sciences 59, 7, 072001. 642

[12] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel Rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vin- 643
cent Vanhoucke, Patrick Nguyen, and Tara N. Sainath. 2012. Deep neural networks for acoustic modeling in speech 644
recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29, 6, 82–97. 645

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and 646
Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM 647
International Conference on Multimedia. ACM, New York, NY, 675–678. 648

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural 649
networks. In Advances in Neural Information Processing Systems. 1097–1105. 650

[15] Andrew Lavin. 2015. maxDNN: An efficient convolution kernel for deep learning with maxwell GPUs. 651
arXiv:1501.06633. 652

[16] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE 653
Conference on Computer Vision and Pattern Recognition. 4013–4021. 654

[17] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Teman, Xiaobing Feng, Xuehai Zhou, 655
and Yunji Chen. 2015. PuDianNao: A polyvalent machine learning accelerator. ACM SIGARCH Computer Architecture 656
News 43, 369–381. 657

[18] Michael Mathieu, Mikael Henaff, and Yann LeCun. 2013. Fast training of convolutional networks through FFTs. 658
arXiv:1312.5851. 659

[19] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, et al. 2016. Going deeper with 660
embedded FPGA platform for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International 661
Symposium on Field-Programmable Gate Arrays. ACM, New York, NY, 26–35. 662

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan- 663
neershelvam, and M. Lanctot. 2016. Mastering the game of go with deep neural networks and tree search. Nature 529, 664
7587, 484. 665

[21] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. 666
arXiv:1409.1556. 667

[22] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2014. Deeply learned face representations are sparse, selective, and robust. 668
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2892–2900. 669

[23] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann LeCun. 2014. Fast 670
convolutional nets with fbfft: A GPU performance evaluation. arXiv:1412.7580. 671

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

TACO1501-13 ACMJATS Trim: 6.75 X 10 in March 5, 2018 16:59

13:26 W. Zhao et al.

[24] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In Computer Vision—672
ECCV 2014. Lecture Notes in Computer Science, Vol. 8689. Springer, 818–833.673

[25] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based accel-674
erator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium675
on Field-Programmable Gate Arrays. ACM, New York, NY, 161–170.676

[26] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong. 2016. Energy-efficient CNN implementa-677
tion on a deeply pipelined FPGA cluster. In Proceedings of the 2016 International Symposium on Low Power Electronics678
and Design. ACM, New York, NY, 326–331.679

[27] Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang, Bo Feng, Yuchun Ma, and Guangwen Yang. 2016. F-680
CNN: An FPGA-based framework for training convolutional neural networks. In Proceedings of the IEEE International681
Conference on Application-Specific Systems, Architectures, and Processors. 107–114.682

Received June 2017; revised December 2017; accepted January 2018683

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 13. Publication date: March 2018.

